
S1 Appendix for “Modeling the excess cell surface stored in a complex morphology of 

bleb-like protrusions” 

 
The possible surface excess  that can be stored on the rounded cell with equally 

sized sphererical BLiPs. 
 

 

 
1     Membrane excess 

 

Suppose a spread cell has volume 0V  and membrane surface area 0S . We define membrane 

excess as 
S

S0  , where S  is the surface area of a sphere with volume 0V . Thus, 
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2     Two dimensional case 

 

In 2D, the definition of membrane excess becomes 
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Let’s assume that a rounded cell has circular folds (“blisters”) of radius r  tightly covering the 

cell body of radius R  (Fig. 1). Then, 

 

 

Fig 1 
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where the number of folds is                
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In the limit Rr  ,   

r

R
N


                                                                   (6) 

and 

0

22 ARrR   

0

2 ARR    

so that  

 






1

0A
R                                                               (7) 
























 1

10A
r                                                      (8) 

  22

22

1 




N                                                            (9) 

 

Therefore, membrane excess can be accounted in the given geometry  0r  if 

 

   1                                                                  (10) 

 

Since the integrated curvature of a circle is  
r

rr



2

12
2
 , the total curvature is  

   
 


102

22222
rr

R

Rr
N

R
K  

 

 

 

3     Three dimensional case 

 

In 3D, (3)-(10) become 

 

Total volume:     0
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Total surface area:   
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The number of folds (for Rr  ):    
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From (11)-(13) we find that 
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In this case, membrane excess can be accounted in the given geometry  0r  if 
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Numerical example: 

 

Fig. 2 shows the dependence of  R ,  r  and  N , according to equations (7)-(9) for 
2

0 570 mA  and equations (14)-(16) for 
3

0 10000 mV  . Grey area corresponds to r  between 

0.5 and 1.0 m . 

 

Fig. 2 

 

Comment: the above arithmetic is valid only under assumption that the folds are circular 

(spherical) with the same size. For such geometry the maximum membrane excess is 1  (in 

2D) and 5 (in 3D). In different geometry, such as sinusoidal folds (Fig. 3), the membrane excess 

doesn’t have to be bound. However, this geometry requires higher integrated curvature. We can 



use our discrete model, that minimizes curvature but is not limited to a specific geometry, to 

explore different shapes as a function of membrane excess   and the number of folds N . 

 

 
Fig. 3 

 

N=60 


